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Pattern formation on the surface of cationic-anionic cylindrical aggregates
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Charged pattern formation on the surfaces of self-assembled cylindrical micelles formed from oppositely
charged heterogeneous molecules such as cationic and anionic peptide amphiphiles is investigated. The net
incompatibility y among different components results in the formation of segregated domains, whose growth
is inhibited by electrostatics. The transition to striped phases proceeds through an intermediate structure
governed by fluctuations, followed by states with various lamellar orientations, which depend on cylinder
radius R, and y. We analyze the specific heat, susceptibility S(¢"), domain size A=27/¢", and morphology as

a function of R, and Y.
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Many heterogenous molecules, including lipids and am-
phiphiles, assemble into finite size aggregates or micelles
[1-5]. Coassembly of cationic and anionic heterogeneous
molecules is a route to create functional biomolecular mate-
rials, such as stable vesicles for drug delivery [1,2] and bio—
active fibers [3,4]. Coassembled cationic and anionic systems
are ubiquitous in nature since most biomolecules are heter-
ogenous, charged and strongly associating in aqueous solu-
tions. The competition of long-range electrostatic and short-
range interactions among different coassembled components
may lead to the formation of complex aggregates with sur-
face charge heterogeneities. These heterogeneities are ex-
pected to play a prominent role in the fabrication of func-
tional assemblies and in the self-organization of the
aggregates.

The assembly of single component charged amphiphilic
molecules is restricted by electrostatic repulsion [6,7]. For
example, electrostatics restricts assembly of charged peptide
amphiphiles (PA) composed of a hydrophobic block con-
nected to a peptide block that favors B-sheet formation.
Single component PAs assemble only when the peptide
blocks are neutral (acidic PAs assemble at high pH and basic
PAs at low pH conditions) and/or when the salt concentration
is excessively high. However, at physiological pH condi-
tions, when the molecules are charged, stoichiometric mix-
tures of acidic (=) and basic (+) PAs coassemble at one per-
cent concentration into nanofibers of diameter about 6—8 nm
and a few microns length, which form a network that re-
sembles extracellular matrix found in living tissue [3]. The
peptide amphiphile charged end groups are exposed to the
surface of the fibers, and their amino acids sequences can be
designed to promote the growth of bone [8], or neural cell
differentiation [4].

Coassembled neutral molecules, such as phospholipids
and cholesterol in mono or bi-layers, are generally unstable.
These neutral assemblies generate domains of different den-
sity or composition along the surface, which coarsen with
time [5] and, eventually, lead to the dissolution of the coas-
sembled structure [9]. Instead, in coassembled chemically
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dissimilar cationic and anionic amphiphile mixtures, the
compositional heterogeneities driven by a net incompatibility
among the different components are stabilized by electrostat-
ics, which favors mixing of the charged components. At low
temperature 7, the competition of the interfacial energy
(which favors large domains) and the electrostatic interac-
tions (which favors small domains) is expected to result in
periodic surface charged domains [10,11] of size A. In this
letter we study the formation of charged domains in cylindri-
cal aggregates with Coulomb interactions at various degrees
of incompatibility and cylinder radii. We analyze charge cor-
relations and domain orientations, as well as the thermody-
namics of the local segregation process. We show that phase
segregation on the surface of coassembled cationic-anionic
micelles can be readily observed when the net incompatibil-
ity among dissimilar molecules generated by chemical and/or
molecular sizes differences is larger than a couple kg7’s.

We consider each aggregate as a stable structure, thus
constraining the cylindrical geometry of the micelles and ex-
amining only equilibrium surface structures. A binary elec-
troneutral charged lattice fluid consisting of positive and
negative units of equal absolute charge |Q,|=|Q_|, confined
to a cylindrical monolayer of radius R, and length L.=L_, is
placed in the center of the box L XL XL, along the z axis.
The surface of the cylinder is filled with spherical units of
diameter o=1, in such a way, that all units are placed into
the knots of a triangular lattice of period a=o (Fig. 1). The
net degree of compatibility in kg7 units (y=n[e,_—(e__
+&,,)/2], where n=6 is the number of nearest neighbors) in
our incompressible model is simply y=-3e¢,,, because for
simplicity we only consider short-range nonelectrostatic at-
traction among positively charged molecules (in a compress-
ible model all the interactions have to be included). It should
be noted here that y describes the effective non—electrostatic
interaction among the coassembled macromolecules and not
among single monomers. In the systems with only van der
Waals interactions y is proportional to 1/7, however, sys-
tems with hydrophobic and hydrogen bonding interactions,
such as in coassembled PA’s, the pair interaction may have a
complex T dependence. Excluded volume and electrostatic
interactions are also considered. The Hamiltonian of the sys-
tem reads as follows:
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FIG. 1. (Color online) Snapshots of typical configurations of (a)
isotropic phase (y=4.5), (b) locally correlated state (x=6.75), (c)
striped state with defects (x=9.0), and (d) parallel striped phase
(x=12.0). R,/ o=8.
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where Q; is a charge of the ith unit, €, is the average dielec-
tric constant of the media in units ¢*/4mo,r;=|r;-r|/o is a
dimensionless distance between ith and jth units, 7; deter-
mines the position of the ith unit in the space, Q,=1 and the
summation in the second term is only over nearest neighbors.
To exclude interaction with displaced image—cylinders, peri-
odical boundary conditions are applied only in the z direction
and, thus, Lekner summation technique [12] is used to cal-
culate the electrostatic energy of the single cylinder system
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where p;; =[x,-2j+y izj]ll2 and for m=0 the terms with i=j are

omitted. We report standard canonical Monte Carlo simula-
tions following the Metropolis scheme for various values of
e, €[-4.5,-0.5], €=10, R./oe[1,8] and L./ o=100.
Simple moves in the phase space are performed by exchange
of two randomly chosen particles. Each system is equili-
brated during 10° MC steps per particle and another 10°MC
steps are used to perform measurements. The equilibration
process is accompanied by a gradual decrease of temperature
(temperature annealing) from 7,,,=10 to T,=1. To ana-
lyze equilibrium properties we calculate the heat capacity Cy,
and the static structure factor
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where Ej is a two-dimensional Cartesian surface vector and
S(q) is averaged among different directions. We focus our
attention on the size of the segregated domains and on the
susceptibility, a degree of correlations in the system.
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FIG. 2. Dimensionless, normalized by N, heat capacity as a
function of the pair attraction energy yx for different R,.

The transition from the isotropic to the striped phase
begins with the appearance of segregated domains [Fig. 1(a)]
and proceeds through an intermediate locally correlated
state governed by fluctuations [Fig. 1(b)]. In the planar (2D-
monolayer) case, in the limit of zero charge, a macroscopic
phase segregation in the mean field approximation is
expected at a critical point y*P=2, as predicted by a simple
coarse-grained free energy functional of the neutral system

[13],
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where ¢=¢(r) is the local charge concentration, f(¢)
=¢In p+(1-p)In(1-p)—x¢*>, k=xa>/2 [14]. In the
charged case there is no critical point. Instead, a broad peak
in the heat capacity (Fig. 2) at a characteristic value denoted
by x'" is observed. The charges restricts the possibility of
macroscopic segregation and induces instead favorable fluc-
tuations of wave length N\. If the charge fluctuations are
small, a density variation till second order in the free energy
in terms of the Fourier components of the density ¢, gives
AF/kgT~3,b,0_,/(2S0(q)), where  S5'(q)=4-2x+xq*
+8m/qe,. The competition between electrostatic, 87/ge,,
and gradient, yg?, energies results in the formation of most
favorable fluctuations of finite wave length N\=27/¢" and the
appearance of a peak in Sy(g) at ¢"=(47/€,x)"* as shown in
the computed S(g) in Fig. 3(a). This scaling regime is pos-
sible for y<x" (fluctuations are expected to modify this
mean field scaling) [Fig. 3(c)]. On the other hand, in the high
x limit (low 7), strongly segregated charged domains of size
A with a well defined line tension y~ y [15] develop. The
competition of the interfacial energy among the segregated
domains, yA, and the electrostatic penalty associated with
creating a charge domain, (A?)/(e,A), gives another scaling
limit A ~ (&,x)"> [10]. The second scaling regime is found to
exist for y> ¥, where y'?) is defined below.

The mean-field analysis of Eq. (4) erroneously predicts a
continuous transition to a periodic structure signaled by a
mean field susceptibility Solg)= at  x;,=2+(3/2)
X[4m\xep! €177 1t is well known that the transitions from
isotropic to periodic structures cannot be continuous [16]. In
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FIG. 3. (a) Static structure factor for R.=5 for different y, (b) magnitude of the peak of the structure factor, S(¢"), as a function of y for
different R, values, and (c) double logarithmic plot of the peak position ¢* versus x for different R..

3D the electrostatically driven microphase separation [17] is
often suppressed by various effects [18]. Since long-range
order in 2D systems with 1/r interactions is uncertain
[19,20], the possibility of a classical thermodynamic transi-
tion to periodic structures is questionable. In 1D, on the other
hand, fluctuations destroy the possibility of either macro—
phase or microphase transitions at nonzero T [21]. We expect
to recover the 2D limit only when R.— o and the 1D case
when R.—0.

Appearance of large domains on the surface of the cylin-
der of final radius applies geometrical restrictions on the size
and symmetry of the domains, especially in the 1D-limit.
These geometrical restrictions may influence physical prop-
erties, such as the susceptibility. Figure 3(b) shows a non-
monotonic dependence of S(¢") with y. We find that S(¢") is
independent of R, for y< x?, while for x> x® it shows a
non monotonic dependence on R,. The point x* corresponds
to the crossover transition from the state, where the segre-
gated domains are locally correlated, to the striped state,
where the domain size scales as A ~ (&,x) "> and the domains
morphology depends on R,.. The melting of striped structures
in the limit R,— % may occur via the Kosterlitz-Thouless
mechanism [22]. Besides the appearance of dislocations and
other defects (Fig. 1(c)), the striped state on the cylinder is
richer due to the possibility of different symmetries. We find
a broad peak in S(g") versus R, [Fig. 4(a)] for each y> y?,

implicitly denoted by x®, that moves to larger R, values
with increasing . For intermediate y>x® the structures
are strongly dependent on R.. For very wide cylinders
(¢"R,>2.5) we find a defect mediated striped state. With
decreasing R, the striped state turns into the spiral/zigzag
state (1 <g'R.<2.5). With further decreasing R, the spiral/
zigzag phase, first, turns into a parallel lamella and then into
the ring phase (¢"R.<1). With increasing the energy x, the
spiral state turns into the zigzag state and then into the par-
allel striped phase. Our simulation shows that for large y the
parallel stripe phase dominates unless the ¢'R.~ 1.

We calculate an order parameter with the purpose of char-
acterizing the geometry of the domains and to find their pref-
erable morphology. We begin by defining independent clus-
ters on the surface of the cylinder. For each cluster C we
calculate the inertia matrix with components

Ne
1 o o
Tap= 152 (=P =), (5)
Ci>j

where N is the number of ions in the C cluster and r{" is the
ath Cartesian component of the position vector of the ith ion.
To characterize the anisotropy of the cluster we use the “as-
phericity parameter” introduced by Rudnick and Gaspar [23]
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FIG. 4. (a) Susceptibility S(¢") as a function of R, near extremum, (b) asphericity order parameter as a function of y and R, (c) schematic
phase diagram (y,R,) implied by results of simulation, where I is the isotropic phase, II is the parallel lamella phase, L is the ring phase,
LC is the locally correlated state, S is the helically twisted state, Z is the zigzag state, and DM is the defect mediated state. Lines (1), (2),

(3), and (4) correspond to 'V, @, ¥, and y¥.
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where (R2,R§,R§) are the eigenvalues of the matrix
T,z which defining the three principal axes of the cluster,
Ti[T]=R}+R3+R3 is the trace, M[T]=RIR5+RIR3+R3R] is
the sum of three minors and A is averaged among all clus-
ters. For spherically symmetric objects (R;=R,=R3) A is
equal to zero, for thin toroidal objects (R;=R,,R3<<R);) it is
equal to A=1/4 (in our case, ring phase) and for long thin
stripes (R, <<R|,R;<<R;) A=1 (parallel lamella phase). Fig-
ure 4(b) shows A as a function of y. For small values
of x, when system is isotropic, the asphericity parameter
takes value A=0.6 independent on R.. For wide cylinders
(¢"R,>1) A grows with x and approaches unity at large x
values. For relatively thin cylinders, ¢'R,=1.5, it ap-
proaches unity faster than for cylinders with ¢'R,=2.5, due
to the fact that A does not distinguish stripes in parallel,
spiral or zigzag states. Meanwhile, for the stripes disturbed
by the defects (¢°R.=2.5) the asphericity parameter takes
smaller values than unity. In the case of thin cylinders
(¢"R.<1) the asphericity parameter A indicates formation of
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ring stripes. The transition from the parallel lamellar phase to
the ring phase is found at y denoted by .

Our results are summarized in Fig. 4(c), where we show a
schematic (y,R,) phase diagram. We predict various micro—
phases obtained as a result of the interplay of short- and
long-range forces among stoichiometric charged compo-
nents confined on the surface of a cylindrical fiber. Our study
suggests that besides modifying the size and the chemistry of
the molecules to induce different domain symmetries, one
can coassemble basic and acidic molecules with different
total charge per molecule, e.g., +2 and —1, which may induce
other domain symmetries along the surface of the cylinder
[10]. Various different symmetries and interesting phenom-
ena appear as a result of the interplay between the symmetry
of the surface domains and the geometry of the aggregates.
The constraint of tiling the surface of aggregates with finite
size domains of different symmetries is a topic of interest
and is relevant to studies of viral symmetry and other self-
assembled supramolecular structures.
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